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A most popular model in the family of two-dimensional uniformly-frustrated 
X Y  models is the antiferromagnetic model on a triangular lattice [AF XY(t) 
model]. Its ground state is both continuously and twofold discretely 
degenerated. Different phase transitions possible in such systems are 
investigated. Relevant topological excitations are analyzed and a new class of 
such (vortices with a fractional number of circulation quanta) is discovered. 
Their role in determining the properties of the system proves itself essential. The 
characteristics of phase transitions related to breaking of discrete and con- 
tinuous symmetries change. The phase diagram of the "generalized" AF XY(t) 
model is constructed. The results obtained are rederived in the representation of 
the Coulomb gas with half-integer charges, equivalent to the AF XY(t) model 
with the Berezinskii-Villain interaction. 

KEY WORDS:  Two-dimensional systems; phase transitions, frustrated X Y  
models; antiferromagnetic X Y  model; topological excitations; fractional vortices; 
Coulomb gas; Josephson junctions. 

1. I N T R O D U C T I O N  

It is well-known (1 4) that no rigorous long-range order can exist in two- 
dimensional systems characterized by a continuous group of symmetry. 
Nevertheless, as has been shown by Berezinskii, (5) in the systems with an 
Abelian group of symmetry the so-called quasi-long-range order (an 
algebraic decay of correlation functions) persists at low temperatures. The 
nature of the phase transition to a high-temperature phase with an 
exponential decay of correlation functions has been elucidated by 
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Berezinskii,~6 7) Kosterlitz and Thouless ~s) and Kosterlitz3 9) This transition 
is related to dissociation of pairs of topological excitations (vortices); at 
low temperatures all the vortices are bound in pairs, but at some tem- 
perature, estimated by Kosterlitz and Thouless, ~s) a plasma of free vortices 
is formed. 

A rather popular application of this theory is the description of lattice 
systems of two-component (planar) spins with ferromagnetic interaction 
(XY model) 

H = J  ~ SrS ,, (1 .1)  
(rr') 

where J < 0  denotes the exchange coupling, and s t=  (cos cp~, sin q)r) is a 
two-component unit spin vector. Summation in (1.1) is performed over the 
pairs of nearest neighbors on a regular two-dimensional lattice. 
Hamiltonian (1.1) can be expressed in terms of the variables ~o, in the form 

H=J~ COS(~,--pr,) (1.2) 
(rr') 

The particular structure of the lattice becomes important for the case 
of an antiferromagnetic (AF) interaction ( J >  0). The partition function of 
the AF model on a square lattice can be reduced to that of a ferromagnetic 
model by the substitution s ~ - s  for one of the two sublattices, but this 
does not hold for the case of a triangular lattice. The AF XY model on a 
triangular lattice (AF XY(t) model) is a frustrated one; for J > 0  one 
cannot minimize all the terms in the Hamiltonian (1.1) simultaneously. The 
ground state of this system is well known: it contains three equivalent 
sublattices, their spins being rotated by the angle 120 ~ in respect to each 
other 

@2 = @1 + 120~ ~ 3  = @2 + 1 2 0 ~  (1.3a) 

o r  

@2 = @1 - -  120~ ~3 = ~2 - 120~ (1.3b) 

The ground state is twofold discretely degenerated, in addition to the con- 
tinuous degeneration caused by the possibility of homogeneous spin 
rotation. Consequently, the symmetry group of AF XY(t) magnet is 
U(1) x Z2, and the order parameter degeneracy space can be presented as 
two disconnected circumferences. 

Notwithstanding the recent active investigations, ~1~ the question of 
the nature and succession of phase transitions in the system under 
investigation has still remained to be elucidated. In this paper we have 
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analyzed the problem by studying the properties of relevant topological 
excitations in conventional and Coulomb gas representations. 

The AF XY(t) model investigated here belongs to a wide class of 
uniformly frustrated XY models, whose Hamiltonian has the form: 

H =  - J  ~ COS((Pr-- (p,.-- ~,,,) (1.4) 
(rr ') 

with the constraints: 

~@rr,  = 27zf, / = 1 , 2  ..... N (1.5) 
rl 

imposed on fixed constants ~,r'(O,'r-- --Orr')" Summation in (1.5) is perfor- 
med along the perimeter of each elementary plaquette Fi, their number 
being N. Since the interaction entering into the Hamiltonian (1.4) is a 
periodic and even function, it is sufficient to assume f e  [0, 1]. For f lying 
outside the segment [0, �89 the problem can be reduced to analyzing 
f e  [0, �89 by redefinition of the phase q)r. The AF XY(t) model (all 

,r,= 7z) corresponds to f = �89 
As has been mentioned above, the ground state of the AF XY(t) 

model can be of two kinds (see Eqs. (1.3a) and (1.3b)), In both cases the 
angle q) rotates by 360 ~ when the plaquette is passed around, i.e., each 
triangle is characterized by its own helicity (vorticity) h = _+1. In the 
ground state the helicities with opposite signs form an alternating regular 
structure. 

The above definition of helicity means that its value is calculated with 
respect to the ferromagnetic state of the plaquette. Such a definition has 
been use in all the previous papers. It turns out to be inconvenient for con- 
sidering topological excitations of the domain wall-type in the AF XY(t) 
model and in more general uniformly frustrated models. 

It seems appropriate to calculate helicity in the following manner 

1 
h = ~-~ 2 { @r-  q)r ,-  (//rr. } (1.6) 

/'l 

where { ... } denotes the value reduced to the interval (-~r, ~). In the case 
of the AF XY(t) model this procedure corresponds to calculation of helicity 
on the background of an ideal AF state, which cannot be achieved for a 
frustrated model. In this case h = + !  and in the general case of the model 
(1.4)-(1.5) in the ground state we get h = 1 - f ,  - f  

The properties of a two-dimensional AF XY(t) magnet are not of 
academic interest only. In particular, such properties should be displayed 
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by a dense monolayer of Oz on a graphite substrate (~5) and also by layers 
of Eu intercalated into graphite. (~6) 

For the last few years it has become possible to observe experimentally 
the phase transitions typical for uniformly-frustrated X Y  models in regular 
arrays of Josephson junctions/iV 2o) These devices contain a 
macroscopically great number of superconducting elements, which form a 
regular lattice and are weakly coupled with each other. The resistive state 
in those devices placed in an external transverse magnetic field displays 
very peculiar low-temperature behavior when varying the magnitude of the 
flux ~b per an elementary cell. The theoretical description of such systems 
(see, for instance, Refs. (21 23)) can be realized by means of the frustrated 
X Y  models with the Hamiltonian given by (1.4)-(1.5), where 

= 2 ~ ( ' A d l  (1.7) 
~,,' ~o j,., 

and ~bo = ~hc/e is the flux quantum. 
The present paper is organized as follows. Section 2 is devoted to 

elucidation of the nature of topological excitations in the AF XY(t) model: 
integer vortices, domain walls, fractional vortices. In the problem con- 
sidered, two energy parameters can be introduced the energy of the 
domain wall per unit length and the prelogarithmic factor in the vortex- 
vortex interaction. The ratio of these parameters turns out to determine 
what kinds of phase transition are possible. The phase diagram is construc- 
ted. In the following section the same AF XY(t) model is discussed in terms 
of the Coulomb gas representation. A number of other examples of 
uniformly frustrated X Y  models and phase transitions possible in them are 
analyzed in Part ]I, which is published as a separate paper. (24) 

In this paper we study phase transitions in an AF XY(t) magnet for 
zero magnetic field only. An analysis of the phase diagram of the AF XY(t) 
magnet in an external magnetic field presents another interesting 
problem (u-~3/which is consisdered elewhere. (25) 

2. T O P O L O G I C A L  EXCITAT IONS A N D  PHASE T R A N S I T I O N S  
IN THE AF X Y ( t )  M O D E L  

The partition function of the model with a continuously degenerated 
symmetry has a form of a functional integral. The evaluation of the par- 
tition function by means of the saddle-point method requires that aside 
from the ground state, the states corresponding to the Hamiltonian local 
minima and also the fluctuations in their vicinities should be considered. In 
the model under consideration the number of local minima of the 
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Hamiltonian includes such topologically stable excitations as vortices and 
domain walls. 

The vortex in an AF XY(t) magnet can be thought of as vortex in a 
ferromagnet in which spins are rotated by the angles ~p.; the same for each 
sublattice. The values of these angles 40. are equal to those in the ground 
state of an AF magnet. At low temperatures the vortices are bound into 
small pairs. 

The domain walls (Fig. 1) are also relevant topological excitations. 
The states of both sides of the wall belong to two above-mentioned dif- 
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Fig. 1. Domain  walls in an AF XY(t) magnet.  The states to the~ from the walls are the 
same. The states to the right from the walls depend on the position of the wall and can be 
transformed one into another  by rotation through 120 ~ The signs + and - denote the signs 
of helicities equal to _+ �89 calculated by Eq. (1.6). 
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ferent circumferences of the order parameter degeneracy space. If on one 
side of the wall the spin distribution can be described by formulas (1.3a) 
(far from the wall), on the other side it should be described by formulas 
(1.3b). A more accurate treatment of the domain wall, as a Hamiltonian 
extremum, shows that the states on both sides from the wall, given by for- 
mulas (1.3a) and (1.3b), respectively, should satisfy the condition 

ZJ~01 ~ (p~ - -  ~0bl = 60 ~ 180 ~ 300  ~ (2.1) 

The particular value in the right-hand side of (2.1) is dependent on the 
position of the wall. For the given value of Aq~l the values of Acp2 and A~03 
are determined unambiguously by (1.3). These three possibilities are 
illustrated in Fig. 1. 

As has been mentioned above the order parameter degeneracy space 
can be presented as two circumferences. Each point of one of them is con- 
nected with three points on another circumference by equivalent extremal 
paths (domain walls). Consequently, all the points of degeneracy spaces 
can be grouped as families, consisting of six points (three on each circum- 
ference) mutually connected by extremal paths. One of these families is 
schematically shown in Fig. 2. 

There are local minima of Hamiltonian (1.1) of more complex struc- 
tures than those considered so far. They can be treated as a superposition 
of a domain wall with a kink and of a vortex with a noninteger number of 
circulation quanta, the vortex being localized on the kink. Such a vortex 
arises as compensation of the spin orientation discrepancy on both sides of 
the kink. Figure 3 presents schematically a domain wall with a kink and 
the angles of spin rotation on both sides of the wall. Since while passing 
around the kink (for instance, along contour F in Fig. 3) the angles at the 

J 

P5 

Fig. 2. Order parameter degeneracy space of the AF XY(t) magnet. One of the families con- 
sisting of six points connected through extremal paths is indicated. 
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o 

Fig. 3. A domain wall with the kink upon which a fractional vortex should be localized�9 

points of intersection of the domain wall and the contour undergo jumps of 
different values, there arises inconsistency of 120 ~ , which should be com- 
pensated by a fractional vortex. Fractional vortices can be localized also at 
the wall bends and at the points of their intersection. 

Let us now discuss possible phase transitions related to the indicated 
topological excitations. It is a popular idea (see, for instance, ref, 10) that 
since AF XY(t) model's symmetry group is U(1)x Z2, two different phase 
transitions are possible: the Ising transition and Berezinskii-Kosterlitz 
Thouless dissociation of conventional (integer) vortices, so the problem is 
reduced to the elucidation of their successsion. The situation turns out to 
be not so simple. 

Indeed, one of the possibilities pointed out by Dotsenko and Uimin (13) 
as the only appropriate one assumes that with increasing temperature the 
Berezinskii-Kosterli tbThouless transition (5-9) (BKT transition) is the first 
to occur. It is related with the dissociation of pairs of ordinary (interger) 
vortices. On a dual lattice this transition manifests itself in the formation of 
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a "neutral plasma" of positive and negative vortices on the background of 
ordered configuration corresponding to one of the circumferences in Fig. 2. 
In this case the order parameter degeneracy space reduces to Z2. With 
further increasing temperature the Ising type phase transition takes place, 
caused by the vanishing of the domain wall free energy. 

Another situation, when the "domain wall" transition is the first to 
occur, has been mentioned by Lee et  al. ~ It is noteworthy that a change 
in the sequence of phase transitions causes change of their types as well. In 
this case, under the first transition each six-point family of the type shown 
in Fig. 2 converges into a single point. That leads to reducing the order 
parameter degeneracy space to a single circumference of 2~/3 in length. The 
symmetry of the system becomes higher and not only group Z2 but also 
group Z3, which is a discrete subgroup of U(1), are restored. Partial 
restoration of a spontaneously broken continuous symmetry has been 
shown to be possible (26) on an example of a particular modification of the 
ferromagnetic X Y  model, applied for description of superfluid 3He thin 
films. 

When domain walls with infinite length appear, and more exactly, 
when the concentration of such walls is finite, the fractional vortices 
becomes relevant topological excitations instead of integer vortices. This is 
in accordance with order parameter degeneracy space being reduced in the 
above-mentioned manner. With further increasing temperature a BKT 
transition in the system of fractional vortices with circulation _+2~/3 
should take place. 

There exists a third possibility. The free energy of domain walls 
vanishes at a certain temperature, when the interaction of integer vortices is 
still strong enough for them to be bound in pairs (in the absence of frac- 
tional vortices), whereas the interaction of fractional vortices is insufficient 
for formation of bound states. In this case all the group of symmetry 
U ( 1 ) x Z  2 is restored simultaneously, i.e., there appear at once both the 
infinitely long domain walls and free vortices (fractional and integer). This 
should take place by means either of the first order phase transition, or of a 
novel critical behavior, as was supposed by Lee et  al. ~12~ 

Let us consider in detail the phase transition resulting in formation of 
infinite domain walls, taking place at those temperatures when fractional 
vortices are bound in pairs. Though these pairs, and the spin waves as well, 
let the order parameter vary continuously, a discrete variable ~(r), whose 
value changes only when crossing the wall, can be introduced on the 
background of this continuous variation. The domain wall separates the 
states belonging to different circumferences (Fig. 2). The domain wall 
transition can be described qualitatively by the lattice model with a short- 
range interaction, in which the discrete variables a(r) acquire six different 
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values (for instance, a(r)  = 1, 2,..., 6). The symmetry of such a model should 
be Z3 x Z2, and not Z6. The weight function corresponding to the nearest 
neighbor interaction should have a form 

W(cr - a ' )  = 1 a - or' = 0 (mod 6) 

= w a - a ' =  1 (mod 6) 

= 0  a - a ' = 2  (rood 6) 

= w a - a ' =  3 (rood 6) 

= 0  a - a ' = 4  (rood 6) 

= w  a - a =  5 (mod 6) 

(2.2) 

weight function 
I ~ ( r - r ' ) =  1 + 3w z - r ' = 0  (mod 6) 

= 1 r - r ' =  1 (mod 6) 

= 1 z - r '  = 2 (mod 6) 

= 1 - 3 w  ~ - r ' =  3 (mod 6) 

= 1 ~ - T' = 4 (rood 6) 

= 1 r - r ' =  5 (rood 6) 

(2.3) 

This form of the weight function displays cubic symmetry of the dual order 
parameter  r. We can interpret r as a unit vector which is parallel or 
antiparallel to the three mutually perpendicular coordinate axes. If we 
assume that a unit weight function corresponds to mutually parallel ~, then 
the weight function W,~ = 1/(1 + 3w) corresponds to perpendicular ~, and 
W~+ = (1 - 3w)/(1 + 3w) to antiparallel ones. In a 2n-state cubic model for 
n > 2 and W,~ > WT+ the phase transition is of the first orderJ 28) Our case 
corresponds to n =  3. The phase transition point of the 2n-state Potts 
model (corresponding to the case W~_ = WT+) also belongs to the same 
line of the first order phase transitions. (2s) 

Summarizing the results obtained, we enumerate the available 
possibilities: 

1. BKT transition, and with further increase in temperature the Ising 
transition. 

where w = e x p ( - J w / T )  and Jw is the energy per a unit length of the 
domain wall. Equation (2.2) means that the domain wall can separate only 
the states with different parity of the variable. 

In case a dual transformation (27~ is performed for model (2.2), we 
obtain a model with an analogous structure of Hamiltonian, but with the 
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2. First order transition and then BTK transition in the system of frac- 
tional vortices. In this case the value of the helicity modulus of the spin 
system at the BKT transition point should be equal to (18/70T, and 
not to (2/z0 T, as in the case of a conventional BKT transition. 

3. Only one phase transition of the first order or that of a new class of 
universality. 

In the first case no rigidity of a spin system relative to continuous 
deformation can be observed in the intermediate phase, but 
"antiferromagnetic" ordering of helicities of opposite signs is retained. In 
the second case in an intermediate phase the rigidity of the spin system is 
retained and, though the correlation function (exp i(~rl--~0r2)) decays 
exponentially at large distances due to existence of infinitely long domain 
walls (even if rl and r: are taken to belong to the same sublattice), some 
other correlation functions, for instance, (exp i6(~,~- ~0r2)) are charac- 
terized by an algebraic decay. In a high-temperature (disordered) phase all 
the correlation functions mentioned above decay exponentially. 

A qualitative analysis performed above does not make it possible to 
indicate unambiguously which of these possibilities is realized in model 
(1.2). The results of numerical simulations (1~ reveal the logarithmic 
behavior of the specific heat and the critical exponents that correspond to 
the Ising type transition. This indicates unambiguously that the first of the 
possibilities is realized, so we can conclude that at a lower temperature a 
conventional BKT transition should take place. This conclusion turns out 
to be in agreement with the Miyashita and Shiba results. (1~ 

For realization of other possibilities it is necessary to consider 
generalization of Hamiltonian (1.2) for the case of some other form of the 
interaction function, distinct form Jcos(q0r-q)~,), or for the case of the 
interaction of farther neighbors being taken into account. Figure 4 shows 
schematically a phase diagram of a "generalized" AF XY(t) model. It con- 
tains four different phases and is presented in the coordinates T/Jw, T/Jv, 
where Jw is the domain wall energy, and Jv is the prelogarithmic factor in 
the vortex-vortex interaction. On line be the free energy of a domain wall 
turns to zero; line df corresponds to the dissociation of pairs of fractional 
vortices. Line df terminates on line be, since on the other side of be the frac- 
tional vortices cannot be separated by large distances, being localized on 
closed domain loops of a limited size. Line ac denotes dissociation of 
ordinary vortex pairs. This line also terminates on line be, since on the 
other side of be some other process is responsible for disordering, namely, 
the dissociation of pairs of fractional vortices. It seems extremely probable 
that the first order phase transition line de of the cubic model will extend 
further (beyond point d) as a first order transition line, since the transition 
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Fig. 4. 

72~. 

Phase diagram of the "generalized" AF XY(t) model, N is a disordered phase, S is an 
ordered phase, 11 and I2 are two different intermediate phases. 

of fractional vortices to plasma corresponds only to a smoth change in the 
depth of one of the competing free energy minima. 

In Fig. 4 the straight lines passing through the origin of coordinates 
correspond to thermodynamic paths, i.e., to variation of temperature only, 
while retaining the form of the interaction (Jw=const,  Jv=const) .  
Depending on the slope they intersect one or two lines of phase transitions. 

The situation when the domain wall transition precedes the dis- 
sociation of fractional vortices is possible due to the fact that a special form 
of interaction function can be chosen such that the energy of the domain 
wall vanishes, whereas the system possesses the finite helicity modulus even 
in the presence of a arbitrary number of domain walls. 

3. PHASE TRANSITIONS OF THE AF XY( t )  MODEL 
AND THE COULOMB GAS 

It has become a tradition to describe the systems with the order 
parameter having planar symmetry by the Berezinskii-Villain model (BV 
model). (7'29) In the case of an AF XY(t) magnet the partition function of 
the BV model has the form 

exp{ 2 } 
(3.1) 
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where (rr') denotes a pair of neighboring lattice sites, and Prr' are integers. 
The BV model admits rigorous transformation to the Coulomb gas. (29'3~ 
As a result, we get 

[!z  ] Z = Z  0 ~ exp - m(R) G ' (R ,R ' )m(R ' )  (3.2) 
{m(R)} 2 R,R' 

where summation is performed over "neutral" vortex configurations 

~ m ( R ) = 0 ;  
R 

m(R) acquire all the half-integer values (cf. Ref. (31)) and are defined at the 
sites of a dual (honeycomb) lattice. G(R, R') satisfies a discrete analog of 
the two-dimensional Poisson equation 

4rr'2J 6 
ARG(R, R ' ) -  ~- aa' (3.3) 

so at large distances the behavior of G(R, R') is logarithmic in [ R - R ' I .  
The generalization of the BV model for the case of a uniformly 

frustrated X Y  model with f # l  and its further transformation to the 
Coulomb gas representation results in the partition function (3.2) in which 
re(R) acquire the values ( - f +  integer). (32) 

The ground state of the Coulomb gas with half-integer charges on a 
honeycomb lattice presents an alternating regular structure of charges + �89 
and - �89 This is possible only due to the fact that the honeycomb lattice 
can be divided into two equivalent sublattices. The ground states is double 
degenerated ("vacua" a and b). Continuous degeneration is lost in the 
transformation to the Coulomb gas. Such a regular structure of positive 
and negative charges can be treated as a peculiar ionic crystal. 

Let us consider now the defects which can occur on the background of 
the ground state. The defects of the first type are excessive integer charges 
(positive or negative) arising, for instance, if - �89 is replaced by + 1 or by 

(Fig. 5). The energy of excissive charges is finite for the case of a 
neutral pair and depends logarithmically on its spacing. It also contains a 
finite contribution dependent on the value and sign of the excessive charge 
and on the sign of the background charge in the point where the excessive 
charge is situated. That is, the "core" energies of the above-mentioned 
defects are different. At low temperatures all the excessive charges are 
bound in pairs. 

Another class of excitations consists of domain walls separating the 
regions of vacua a and b (Fig. 5). The neutral domain wall has finite energy 
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Fig. 5. Coulomb gas of half-integer charges on a honeycomb lattice: defects on the 
background of the ground state, a and b are excessive charges (+1 and -1 ) ,  cg is the domain 
wall. Charge + ~ is localized at the point d of the domain wall, and charges - 3 t at the point e 
and f 

per unit length and the energy of its interaction with other domain walls 
decreases exponentially with distance (see also Section 2 of Ref. 24). At low 
temperatures only small islands of vacuum b on the background of vacuum 
a, or vice versa, are present. The domain walls form small closed loops. 

With increasing temperature, two phase transitions are possible. They 
are (1) melting of an ionic crystal, i.e., vanishing of the mean charge of 
each of two sublattices, and (2) transition of an ionic crystal from a "dielec- 
tric" to a "conducting" state, i.e., dissociation of pairs of excessive charges. 
In the conducting state, the mean square of the charge for the part of the 
crystal containing an equal number of sites of each sublattice is propor- 
tional to the area of this region. In a dielectric state, the fluctuational 
charge grows with the system size slower. The above transitions are essen- 
tially different, and can occur independently. 

Let us consider in detail the domain walls in the Coulomb gas 
representation. The domain wall can be defined as a line passing along the 
bonds of the initial (triangular) lattice in such a manner that each elemen- 
tary link of this line divides the two charges of an equal sign (Fig. 5). 
Provided each two neighboring links of the domain wall form angles of 
120 ~ such a domain wall is neutral. At each site where the neighboring 
links form angles of 60 ~ or 180 ~ an excessive charge _+ 1 arises (Fig. 5). 
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The concept of an excessive charge on the background of a regular 
sign-alternating structure should be of a constructive character, i.e., the 
charge of the given structural defect should be defined by its interaction 
with a distant probe charge. The excessive charge can be calculated by the 
following procedure. Each of the charges of the given state is divided into 
three equal parts, which are shifted to the centers of three hexagons 
surrounding the given lattice site. Then all the charges fallen into the center 
of each of the hexagons are summed up. 

I n  the case of a regular alternation of charges + �89 a n d  - �89 the charges 
of all the hexagons turn out to be equal to zero. The situation does not 
change, if there are domain walls, whose neighboring links form the angles 
of 1 2 0  ~ I n  the case of other angles each joint has the charge +_ �89 The point 
of intersection of two domain walls either has no charge at all, or its charge 
is + ~. The point of intersection of three domain walls has the charge _+ 1. 
All the enumerated situations are illustrated in Fig. 6. 

I n  terms of domain walls a simple excessive charge ( + �89 instead of - �89 
corresponds to an elementary triangular loop, its vertices possessing the 
charge +�89 each, and the total charge being unity (Fig. 5). For an 
arbitrarily shaped closed domain wall the charge turns out to be an integer, 
as can be expected when the signs of some set of half-integer charges (in the 
inner region of the loop) are changed. 

If the phase transition of excessive charges unbinding is the first to 
take place with an increse in temperature, it is related to the unbinding of 
integer charges ("independent" or localized on closed domain walls forming 

I I P 

"t\'Y !N,. 
/ - \ §  / 

I I 1 
h al 

I [ " I 

e #/ 9 
Fig. 6. Excessive charges corresponding to different structures: a, regular structure (zero 
charge); b, domain wall (zero charge); c, d, domain walls (charge + �89 e, intersection of two 
walls (zero charge); f, intersection of two walls (charge + ~); g, intersection of three walls 
(charge +1). 



T w o - D i m e n s i o n a l  Uni formly  Frustrated XY Models ,  I. 15 

not too large loops). In the other case if the "melting" of a sign-alternating 
structure is the first to take place, then a network of infinite domain walls 
appears which leads to a topological freedom of fractional charges. The 
second phase transition (if it has not occurred simultaneously with the first 
one) is now related to dissociation of pairs of charges + �89 

Coincidence in classification of defects for an AF XY(t) model and for 
the Coulomb gas considered proves the reliability of the analysis performed 
in Section 2, which does not take spin waves into account, and of the phase 
diagram based on it (Fig. 4). A similar phase diagram should be displayed 
by the Coulomb gas with the partition function defined by the relation 
(3.2), when the form of interaction is charged, but its logarithmic character 
at large distances is retained. 
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